

Introducing Structural Considerations Into Complexity Metrics

Hypotheses

•	Cognitive complexity is a limiting factor in ATC operations. □ Limits Acceptable Level of Traffic (ALOT) due to safety concerns. □ Represents limiting factor in sector and system capacity.
•	Underlying structure is an important factor in cognitive complexity. □ Not considered in current metrics.
•	Improved understanding of how structure impacts cognitive complexity can be used to:
	 □ Better define controller operational limits. ♦ i.e. acceptable levels of traffic (e.g. Monitor Alert in ETMS) □ Provide guidance for airspace and procedure design to reduce complexity.

Structure Missing from Simple Instantaneous Complexity Metrics

Albany Sector, ZBW, 14:00:00 EST, November 30, 2001

- Controllers mental representation richer than instantaneous observables on radar display.
- Most previous complexity metrics are geometric and based on observable states:
 - ☐ Aircraft Densities
 - ☐ Number of Aircraft Transitioning
 - ☐ Points of Closest Approach
- But metrics fail to capture underlying structure...

Example of Underlying Structure

ZBW, Albany Low Altitude Sector (110 - FL230), October 19, 2001

No metrics have been found that systematically include the impact of underlying structure on complexity.

Outline

- Show ETMS data supporting key complexity factors reported by controllers.
- Present model and examples of structure-based abstractions that appear to reduce cognitive complexity.
- Present preliminary formulation of explicitly including structural factors in a complexity metric.

Approach

•	Collaborative effort between MIT and Centre d'Etudes de la Navigation
	Aérienne (CENA).

•	Observations to Identify Structural Factors Influencing Cognitive Complexity (MIT / CENA)
	 □ Field Observations □ Analysis of Standard Operating Procedures □ Focused Interviews with Controllers □ ETMS Data Analysis □ Support Vector Machines
•	Preliminary Models of How Structure Influences Cognitive Complexity (MIT)
	 □ Based on key structural factors. □ Separates impact of structure on both controller inputs and outputs. □ Focus on effect of structure on situational awareness on input side.
•	Preliminary Measures Including Structural Considerations (CENA / MIT)
	□ Explicit inclusion of identified structural factors.□ Cluster-based approach.□ Kolmogorov entropy.

Field Observations

Data Sources

- ☐ Focused interviews with controllers, TMU, training department personnel.
 - What are the key factors driving complexity?
 - ♦ What is the most / least difficult sector?
 - What airspace changes would you make to reduce complexity?
- □ Documented Standard Operating Procedures
- ☐ Observed controllers during live operations.

Facilities visited:

- ☐ En-route (Centers)
 - ◆ Boston, Cleveland, Montreal, Bordeaux
- ☐ Terminal area (TRACON / TMA)
 - ◆ Boston

Focused Interviews Results:

"What are the key factors driving complexity?"

•	Airspace Factors ☐ Sector dimensions ☐ Spatial distribution of airways / Navigational aids ☐ Coordination with other controllers ☐ Number and position of standard ingress / egress points ☐ Standard flows
•	Traffic Factors ☐ Density of aircraft ☐ Aircraft encounters ☐ Ranges of aircraft performance ☐ Number of aircraft in transition ☐ Sector transit time
•	Operational Constraints ☐ Buffering capacity ☐ Restrictions on available airspace ☐ Procedural restrictions ☐ Communication limitations

Airspace Factors

- Sector dimensions
 - □ Shape
 - □ Physical size
 - ☐ Effective "Area of regard"
- Spatial distribution of airways / Navigational aids
- Coordination with other controllers
 - □ Point-outs
 - □ Hand-offs
- Number and position of standard ingress / egress points
- Standard flows
 - □ Number of
 - Orientation relative to sector shape
 - ☐ Trajectory complexity
 - ☐ Interactions between flows (crossing points, merges)

EAST FLOWS NRP ROUTES

Graphics courtesy of Tom Roherty, TMU, ZOB.

- 4497 Aircraft
- Colored by nominal flow destination:
 - ☐ ZBW (Boston Center)
 - □ JFK
 - □ EWR
 - □ LGA
 - □ PHL
 - ☐ BWI / DCA / IAD
 - ☐ ALL OTHER AIRCRAFT

Can easily identify distinct Eastbound flows in lateral dimension:

Left graphic courtesy of Tom Roherty, TMU, ZOB.

Perspective View

Flows exhibit greater variability in the vertical dimension:

Complexity and Structure

•	Investigated mechanisms by which structural factors appear to
	reduce controller cognitive complexity based on simple
	controller task model.

•	Key	tasks	of	Air	Traffic	Controllers:
---	-----	-------	----	-----	----------------	---------------------

- □ Planning
- □ Monitoring
- □ Intervening
- Structure appeared to be used as a basis for abstractions to reduce cognitive complexity.
 - ☐ Situation Awareness Impact

Impact of Structure Based Abstractions on Situational Awareness

Feedback Path AIR TRAFFIC CONTROLLER SITUATIONAL AWARENESS Air **Performance** Level 1 Level 2 Level 3 Decision **Traffic** Perception Comprehension Projection of **Process** Situation **Actions ABSTRACTIONS STRUCTURE**

Examples of Structure-Based Complexity Reduction Mechanisms

•	Stan	dard	Flows	:
	Otali	uulu		,

- ☐ Provide generalized expectation of route through airspace
 - Planning difficulty reduced
 - Monitoring task simplified
 - ◆ Intervention
 - ◆ Reduced for standard flow aircraft

Groupings

- ☐ Shared properties can be used to segregate traffic situations
- ☐ Creates distinct problems, reducing overall scale / dimension of problem:
 - Planning difficulty reduced
 - Monitoring task simplified
 - Intervention coordination costs reduced

Critical Points

- ☐ Create concentration of focus on spatially localized points:
- ☐ Shifts planning and monitoring from spatial to temporal coordination
 - Planning difficulty reduced
 - Monitoring task focused

Standard Flow Abstraction

Standard Flow Abstraction Example

ZBW, Albany Low Altitude Sector (110 - FL230), October 19, 2001

- Identified as "Hard" Sector
- 231 aircraft trajectories over 24 hours
- Flows shown capture 43% of all trajectories

Standard Flow Abstraction Example

ZBW, Utica High Altitude Sector (FL180 - FL999), October 19, 2001

- Identified as "Easy" Sector
- 268 aircraft trajectories over 24 hours
- Flows shown capture 19.8% of all trajectories.

Grouping Example Standard Flight Levels ZOB – ZBW Traffic

Grouping Example Dallas Reroute

May 4, 2001

9:05 p.m.

DFW In-bound

Critical Points Example Dallas Fort-Worth

Critical points arise in part from branching structure of arrival routes:

• June 20, 2001

12:19 p.m.

153 Aircraft In-bound

Critical Points Example Chicago Arrival Sectors

Example: Chicago, May 3, 8:59 p.m.

Sector Boundaries

In-bound ORD

In-bound's Route Flown

Out-bound ORD

Robustness

- Controllers must guarantee safe operation under normal and abnormal conditions.
- Structure-based abstractions can be dynamic:
 - ☐ Will tolerate minor perturbations
- Under non-nominal conditions, the underlying structure may no longer support the abstraction:
 - ☐ I.e. convective weather blocking a route.

Robustness Example Convective Weather in Chicago

 Weather disrupting NW corner fix into Chicago perturbs standard flow abstraction.

Two responses observed:

- □ Standard flow abstraction for aircraft traversing the weather no longer available – aircraft treated as "special cases."
- ☐ Alternative standard flow abstraction is used.

Explicit Inclusion Approach (Preliminary)

- Create measure based on "Effective Number of Aircraft"
 - ☐ Total Difficulty is referenced to difficulty of a "baseline" aircraft, D_{Baseline}

$$Total \ Difficulty = N_{\textit{Effective}} \ D_{\textit{Baseline}}$$

Difficulty Multiplier, DM_i, is relative difficulty of ith aircraft:

$$(DM)_i = \frac{Difficulty_i}{Baseline Difficulty}$$

 N_{Effective} computed from contribution of Difficulty Multiplier, DM_i, of each aircraft

$$N_{\textit{Effective}} = \sum_{i=1}^{M} (DM)_i \cdot (1)$$

M = Number of Aircraft in "Area of Regard"

Explicit Inclusion Approach

Difficulty Multiplier explicitly includes structural factors

```
(DM)<sub>i</sub> = f (Standard Flow Membership (i)) ×
f (Location Relative to Critical Points (i)) ×
f (Cluster / Grouping Membership (i)) ×
f (Encounters With Other Aircraft (i)) ×
f (Aircraft Performance (i)) ×
f (Coordination / Communication Load (i)) ×
f (Aircraft Transitioning Behavior (i)) ×
...
```


Summary

•	Instantaneous traffic distributions do not capture complete
	story of complexity for air traffic controllers.

•	Observations of ETMS data support capture key comp	lexi	ty
	factors reported by controllers.		

☐ Flows through Cleveland Center

•	Present model and identify some key structure-based
	abstractions that reduce cognitive complexity

- ☐ Standard Flows
- ☐ Groupings
- ☐ Critical Points

 Preliminary formulation of explicitly including structural factors in a complexity metric.

- ☐ Represented by Effective Number of Aircraft
- ☐ Approach based on Difficulty Multipliers